www.mymathscloud.com

www.myr	naths	scloud.co	om		mm W	MANAS COULD
Please check the examination de	etails below		ur candidate	information		PHSC/O
Candidate surname		Othe	r names		J	Old of
Pearson Edexcel	Centre	e Number	Cand	didate Numl	ber	
Level 3 GCE						
Thursday 20	Jun	e 201	9			
Morning (Time: 1 hour 30 minutes)		Paper Referer	nce 9FM (0/3C		
Further Mathe Advanced Paper 3C: Further Me				C		
You must have: Mathematical Formulae and St	atistical 1	Tables (Green),	calculator	Total	Marks	

Candidates may use any calculator permitted by Pearson regulations. Calculators must not have the facility for algebraic manipulation, differentiation and integration, or have retrievable mathematical formulae stored in them.

Instructions

- Use **black** ink or ball-point pen.
- If pencil is used for diagrams/sketches/graphs it must be dark (HB or B).
- Fill in the boxes at the top of this page with your name, centre number and candidate number.
- Answer all questions and ensure that your answers to parts of questions are clearly labelled.
- Answer the questions in the spaces provided there may be more space than you need.
- You should show sufficient working to make your methods clear. Answers without working may not gain full credit.
- Unless otherwise indicated, whenever a numerical value of a is required, take $q = 9.8 \,\mathrm{m}\,\mathrm{s}^{-2}$ and give your answer to either 2 significant figures or 3 significant figures.

Information

- A booklet 'Mathematical Formulae and Statistical Tables' is provided.
- There are 7 questions in this question paper. The total mark for this paper is 75.
- The marks for **each** question are shown in brackets use this as a guide as to how much time to spend on each guestion.

Advice

- Read each guestion carefully before you start to answer it.
- Try to answer every question.
- Check your answers if you have time at the end.

Turn over ▶

O NOT WRITE IN THIS AREA

1.

Figure 1

Figure 1 represents the plan of part of a smooth horizontal floor, where W_1 and W_2 are two fixed parallel vertical walls. The walls are 3 metres apart.

A particle lies at rest at a point O on the floor between the two walls, where the point O is d metres, $0 < d \le 3$, from W_1

At time t = 0, the particle is projected from O towards W_1 with speed $u \, \text{m s}^{-1}$ in a direction perpendicular to the walls.

The coefficient of restitution between the particle and each wall is $\frac{2}{3}$

The particle returns to O at time t = T seconds, having bounced off each wall once.

(a) Show that
$$T = \frac{45 - 5d}{4u}$$

(6)

The value of u is fixed, the particle still hits each wall once but the value of d can now vary.

(b) Find the least possible value of T, giving your answer in terms of u. You must give a reason for your answer.

(2)

(a)recognising this as a 'successive direct impacts' question (involving a wall) - hence need to consider each section of the particle's path SEPARATELY (preferably with separate diagrams)

• firstly: section up to particle collision with W

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

Question 1 continued

www.mymathscloud.com ·next, section from after collision with W to before collision with W2 -2 first need to work out the velocity of the particle AFTER collision 1

AFTER collision 1

subbing into impact law-formula for 'e':

$$\frac{2}{3} = \frac{\sqrt{}}{u}$$

$$xu \qquad xu$$

working out the time taken for the particle to travel 3'm at = ums-1 time =

$$fime = \frac{3}{\frac{2}{3}u}$$

-finally-section AFTER collision 2 to 0'

first need to consider 'before' and 'after' of collision 2 and work out the velocity of the particle AFTER it

www.mymathscloud.com finding the time taken for particle to travel (3-d)m at 4/a ms-1

speed

... Summing all the sections' TIMES to get total time

for the particle to return to O

$$T = \frac{d}{u} + \frac{3}{\frac{2}{3}u} + \frac{3-d}{\frac{4}{9}u}$$

Simplifying fractions

=)
$$T = \frac{d}{u} + \frac{q}{2u} + \frac{q(3-d)}{4u}$$

getting common denominator

(b) looking at the expression for T in part (a) and realising that to minimise T need to max. d (to get smaller numerator)

4 the interval for 'd' is 0 d d 3 so dmax = 3 - subthis '3' into the expression for T

$$T_{min}$$
 = $45 - 5(3)$ = $\frac{30}{4u}$ = $\frac{15}{2u}$ secs

www.mymathscloud.com Question 1 continued
One time 1 and in a line of the color of the
Question 1 continued
(Total for Question 1 is 8 marks)

Figure 2

Figure 2 represents the plan view of part of a horizontal floor, where AB and BC are fixed vertical walls with AB perpendicular to BC.

A small ball is projected along the floor towards AB with speed $6 \,\mathrm{m \, s^{-1}}$ on a path that makes an angle α with AB, where $\tan \alpha = \frac{4}{3}$. The ball hits AB and then hits BC. Immediately after hitting AB, the ball is moving at an angle β to AB, where $\tan \beta = \frac{1}{2}$

The coefficient of restitution between the ball and AB is e.

The coefficient of restitution between the ball and BC is $\frac{1}{2}$

By modelling the ball as a particle and the floor and walls as being smooth,

(a) show that the value of $e = \frac{1}{4}$

(b) find the speed of the ball immediately after it hits BC.

(4)

(5)

(c) Suggest two ways in which the model could be refined to make it more realistic.

(2)

recognising this as a successive oblique impacts question : know need to consider each collision separately

(a) let's first consider the first collision - the one between the small ball and AB

FIRST COLLISION

...perpendicular:

remembering how when a particle collides obliquely with a fixed surface, the IMPVLSE acts perpendicular to the plane of impact :: only the perpendicular components

O NOT WRITE IN THIS AREA

Question 2 continued

...parallel:

doesn't change .. can just resolve the v=6 using trig =) 605x = VCOSB

... adding the resolved components onto the diagram:

where tand = 4/3 and tang = 1/3

... nou, two ways to proceed:

METHOD 1: using trig expressions (faster!)

we can use the fact that we know the value of tang= 1/3

$$\frac{1}{3} = e\left(\frac{4}{3}\right)$$

$$\frac{1}{3} = e\left(\frac{4}{3$$

METHOD 2: using exact numerical values for the trig expressions from tand= 4/3 we can draw a right-angled triangle and use the Pythag. triple 3-4-5 to find values for sina and cosa

$$\frac{5}{4}$$
 =) $\frac{5}{4}$ = $\frac{9}{4}$ = $\frac{4}{5}$ = $\frac{4$

and likewise for tang= 1/3 - using Pythagoras'

Question 2 continued

$$\int (1)^2 + (3)^2 = \int 10$$

=)
$$\sin \beta = \frac{0}{H} = \frac{1}{500}$$

 $\cos \beta = \frac{A}{H} = \frac{3}{500}$
 $\tan \beta = \frac{1}{3} = \frac{9iven}{3}$

Subbing these into prev. diagram:

i.e evaluating tang = 0/4 now using numerical values

$$\frac{5}{18/5} = \frac{1}{3}$$
 $\frac{18}{5} = \frac{18}{5}$

=)
$$\frac{24}{5}e = \frac{6}{5}$$

 $\frac{1}{5}e = \frac{6}{5}(\times \frac{5}{24})$
=) $e = \frac{1}{4}$

UAY 2: using the velocity components:

...first perpendicular:

can get from the parallal from one sciom 6cosa = vcosB

÷cosB ÷cosB

$$V = \frac{6\cos\alpha}{\cos\beta} = \frac{6\left(\frac{3}{5}\right)}{\frac{3}{50}}$$

Subbing @ into 0

$$e = \frac{(650)(1/50)}{6(4/5)} = \frac{6}{5} = \frac{6}{5} = \frac{1}{24} = \frac{1}{4}$$

www.mymathscloud.com

(b) now focusing on the second collision of the small ball - the one it makes with BC - in blue is the information found in (a) - IN TERMS OF B

- in orange is the 'w'ms-1 resolved

$$A = \frac{18}{5}$$

$$V = \frac{18}{5}$$

$$V = \frac{18}{5}$$

$$V = \frac{18}{5}$$

$$V = \frac{18}{5}$$

🇤 so sub it into above diagram how know

now ctd. from (a) - we're interested in finding the speed of the small ball after this second collision - the one with wall BC - call it 'w'

WAY I: using properties of angle mymathscloud.com

Now He see how the wall BC becomes the fixed surface that the impulse I perpendicular to:

...first, perpendicular components:

Only these CHANGE - NEL rearranged applies:

www.mymathscloud.com

... next, for parallel components - these remain the same:

VSINB =
$$\binom{6 \log 1}{5} \left(\frac{1}{\log 10} \right)$$
 or $\frac{6}{5}$ = ucosy using exact diagram values

=) $\frac{6}{5}$ = using

Subbing these into diagram

50 now that we have the components of ""-let's pythagorise to get |u|

$$|H| = \sqrt{(6/5)^2 + (9/5)^2}$$

$$= \frac{3\sqrt{13} \, \text{m/s}^{-1}}{5}$$

WAY 2: we can use the angle (90°-B) and exact values

populating resolved v' from (a) but with relation to the (90 - B) angle

which has been a single (10 p) angle

angle (10 p

· give BALL DIMENSIONS

www.mymathscloud.com **Question 2 continued** ... perpendicular to BC after 2nd collision (NEL rearranged applies) evsin(90°-B) = usin8 which following corresponding angles rule: sin (90°-β) = evcosB = usink from exact values in part (a) METHOD 2 diagram and 'v' in METHOD 2 WAY 2 =) 9/5 = using ... next, for parallel components - these remain the same: V(05 (90°-B) = H(05) which following the corresponding angles rules: (OS(90°-B) = Sin B VsinB = wosk = WOSK diagram using exact values vsinB =6/c so now that we have the COMPONENTS of 'w'-let's pythagorise to get |u|= J(6/5)2+(9/5)2 = 3/13ms-1 (c) modelling the ball as a particle - from Chp & Yr I Mechanics: ·consider air resistance .spin/rotation

Smooth walls'-include friction between floor and ball

www.mymathscloud.com Impulse and Momentum - momentum as a vector

3. A particle P, of mass 0.5 kg, is moving with velocity $(4\mathbf{i} + 4\mathbf{j}) \text{ m s}^{-1}$ when it receives an impulse I of magnitude 2.5 Ns.

As a result of the impulse, the direction of motion of P is deflected through an angle of 45°

Given that $\mathbf{I} = (\lambda \mathbf{i} + \mu \mathbf{j})$ Ns, find all the possible pairs of values of λ and μ .

(9)

horizontal

...first starting with a detailed diagram (keeping the vector notation):

:know that the particle is travelling at an angle 45° to the

0.510 _ _

AFTER:
hence, if the particle is deflected by 45° then that means the
angle that it makes after receiving the impulse makes eith

option 1:45° - 45° = 0° with the horizontal

=) moving directly to the right

uith an unknown velocity BUT MOMENTUM

is (3)

MAY 1: reflecting this momentum	MAX 2: subbine due magazine		
	NAY 2: subbing this momentum		
in the velocity AFTER also being (ms-1	into formula for momentum:		
	p=mV		
	momentum velocity		
	p=mv momentum mass (ms-1) (kg/ms-1) (kg)		
	$\frac{\binom{a}{o} = 0.5 \text{ s} \times = \binom{2a}{o} \text{ n}}{}$		
↓	(0) = 0.50 = 70 = (0)		
0.5 $\frac{\alpha}{0}$ ms ⁻¹	$0.5kg \longrightarrow {2 \text{ a} \choose 0} m\varsigma^{-1}$		

Question 3 continued

option 2: 45°+45° = 90° with the horizontal

=) moving directly upwards with an unknown velocity but momentum is (8)

WAY 1: reflecting this momentum in the	WAY 2: subbing this momentum
velocity AFTER also being (b)ms-1	into formula for momentum:
	p=mv
	(°)= 0.5v
	÷0.5
	$\div 0.5 \qquad \div 0.5$ $=) V = \begin{pmatrix} 0 \\ 2b \end{pmatrix} ms^{-1}$
AFTER:	AFTER:
) (b) ms-1) (0) ms-1
	0.5kg
0.5kg	V-3ky

let's evaluate both option 1 and option 2 into the vector formula for impulse: $\Gamma = m(\underline{\vee} - \underline{\vee})$

intpatot. E - mile 21	
using WAY 1:	using WAY 2:
first option 1:	first option +:
$I = m(\underline{v} - \underline{u})$	I = m (V-U)
$\binom{3}{M} \approx 0.5 \left(\binom{0}{0} - \binom{4}{4} \right)$	$\binom{\lambda}{\mu} = 0.5 \left(\binom{2a}{o} - \binom{4}{4} \right)$
$=) \begin{pmatrix} \lambda \\ \mu \end{pmatrix} = 0.5 \begin{pmatrix} \alpha - 4 \\ -4 \end{pmatrix}$	$=) \frac{\lambda}{M} = 0.5 \frac{2a-4}{-4}$
factor the 0.5 into bracket	factor the 0.5 into bracket
$=) \left(\frac{\lambda}{\kappa}\right) = \left(\frac{0.5a - 2}{-2}\right)$	$=) \frac{\lambda}{\mu} = \frac{\alpha-2}{-2}$
=) > = 0.5a - 2 -0	=) λ= α-2 - 0
μ = -2 -©	μ=-2-6
and using fact that the magnitude of	and using fact that the magnitude
I is 2.5 Ns (Pythagoras')	of I is 2.5Ns (Pythagoras')
$(2.5)^2 + (1)^2 = (2.5)^2$	$(2.5)^2 + (M)^2 = (2.5)^2$
=) $\lambda^2 + \mu^2 = 6.25$ or $\frac{25}{4}$ 3	$\Rightarrow \lambda^2 + \mu^2 = 6.25 \text{ or } \frac{25}{4}$

www.mymarkscloud.com

Question 3 continued

here either subbing @ into 10 for):

$$\frac{25}{4} = \lambda^2 + \left(-2\right)^2$$

$$=) \frac{4}{25} = \lambda^2 + 4$$

$$\lambda^2 = \frac{q}{4}$$

Square root

$$\Rightarrow \lambda = \pm \frac{3}{2}$$

: IMPULSE for option 1 is

either
$$\binom{3/2}{2}$$
 Ns or $\binom{-3/2}{2}$ Ns

OR subbing o and o into o:

$$(0.5a-2)^2 + (-2)^2 = ^{25}/4$$

$$= (0.5a - 2)^2 = 9/4$$

square root OR

expanding and solving

the resulting quadratic:

here, either subbing @into 0 for λ:

$$\frac{25}{4} = \lambda^2 + (-2)^2$$

$$\frac{25}{2} = \lambda^2 + 4$$

$$\lambda^2 = 9/4$$

square root:

$$=) \lambda = \pm 3/2$$

:IMPULSE for option 1 is either $\binom{3}{2}$ Ns or $\binom{-3}{2}$ Ns

$$(\alpha-2)^2+(-2)^2=25/4$$

$$=)(a-2)^2 = 9/4$$

Square root OR expanding

and solving the resulting quadratic

... square root:

$$0.5a-2=\frac{3}{2}$$
 $0.5a-2=-\frac{3}{2}$

=)
$$\frac{1}{2}a = \frac{7}{2}$$
 =) 0.5a = $\frac{1}{2}$
=) $\frac{1}{2}a = \frac{7}{2}$ ÷ 0.5 ÷ 0.5

···expanding quadratic:

$$0.25a^2 - 2a + 4 = 2.25$$

... expanding quadratic:

... square root:

 $a-2=\pm \frac{3}{2}$

 $\frac{\text{(f)} \ \alpha - 2 = \frac{3}{2}}{\text{(g)} \ \alpha = \frac{2}{2}} = \frac{3}{2} = \frac{3}{2}$

calceautn solver

subbing the a's into o

$$= \frac{1}{2} = 0.5(7) - 2$$

Subbing the a's into o

$$= 1 = (7/2) - 2$$

Question 3 continued

and	into ②:
-----	---------

$$\lambda = 0.5(1) - 2$$
; $\mu = -2$
= -1.5 or -3/2

$$\therefore I = \begin{pmatrix} -3/2 \\ -2 \end{pmatrix} N s$$

$$\lambda = (\frac{1}{2}) - 2$$
 $\mu = -2$

$$\therefore I = \begin{pmatrix} -3/2 \\ -2 \end{pmatrix} \text{ NS}$$

www.mymathscloud.com

... next option 2:

$$\binom{2}{3} = 0.5 \left(\binom{6}{0} - \binom{4}{4} \right)$$

$$\Rightarrow \left(\frac{\lambda}{b}\right) = 0.5 \left(\frac{-4}{b-4}\right)$$

factor the 0.5 into bracket

$$\binom{\lambda}{\lambda} = \binom{-2}{0.5b-2}$$

=)
$$\lambda = -2 - 0$$

$$\binom{\mathsf{M}}{\mathsf{J}} = 0.5 \left(\binom{\mathsf{SP}}{\mathsf{O}} - \binom{\mathsf{A}}{\mathsf{A}} \right)$$

=)
$$\binom{\lambda}{N}$$
 = 0.5 $\binom{-4}{2b-4}$
factor the 0.5 into the bracket

$$=) \binom{\lambda}{M} = \binom{-2}{b-2}$$

and using fact that the magnitude

of I is 2.5 Ns (Pythagoras')

$$(2)^{2} + (2.5)^{2} = (2.5)^{2}$$

=)
$$\lambda^2 + \mu^2 = 6.25 = \frac{25}{4}$$

here either sub 0 into 3 $(-2)^2 + \mu^2 = 25/4$

$$(-2)^2 + \mu^2 = 25/4$$

square root:

$$\mu = \pm \frac{3}{2}$$

$$\therefore \Gamma = \begin{pmatrix} -2 \\ \frac{3}{2} \end{pmatrix} \text{NS or } \begin{pmatrix} -\frac{2}{3/2} \end{pmatrix} \text{NS}$$

and using fact that the magnitude of I is 2.5Ns (Pythagoras')
$$(\lambda)^2 + (\mu)^2 = (2.5)^2$$

=)
$$\lambda^2 + \mu^2 = 6.25 = \frac{25}{4} - \frac{3}{9}$$

here either Sub 1 into 3:

$$(-2)^2 + \mu^2 = 25/4$$

$$\mu = \pm 3/2$$

$$I = \begin{pmatrix} -2 \\ 3/2 \end{pmatrix} NS \text{ or } \begin{pmatrix} -2 \\ -3/2 \end{pmatrix} NS$$

either square root or use quadratic

$$(-2)^2 + (0.5b-2)^2 = 6.25$$
 or $^{25}/4$

$$(-2)^2 + (b-2)^2 = \frac{25}{4}$$

OR sub 10 and 20 into 3

$$(0.5b-2)^2 = 9/4$$

b-2 = ±3/2

$$\frac{...square\ rooting:}{0.5b-2=\pm3/2}$$

$$0.5b - 2 = \frac{1}{5} \frac{3}{2}$$

$$0.5b - 2 = \frac{3}{2}$$

$$\oplus$$
 b-2 = $\frac{3}{2}$ \ominus b-2 = $\frac{3}{2}$

$$=)0.5b = \frac{7}{2}$$

=) b = 7

=) b = ⁷/₂ =) b = ¹/₂

7... Q Ya dratic:

$$0.25b^2 - 2b + 4 - 9/4 = 0$$

 $\frac{1}{4}b^2 - 2b + \frac{2}{4} = 0$
 $b^2 - 8b + 7 = 0$
factorise
 $(b-7)(b-1) = 0$

=) b= 7 or b=1

Subbing into ②

$$M = 0.5(1) - 2 = -3/2$$
 $\therefore \Gamma = \begin{pmatrix} -2/3/2 \end{pmatrix} \text{ Ns}$

or

$$\Gamma = \begin{pmatrix} -2/3/2 \end{pmatrix} \text{ Ns}$$

$$b^{2}-4b+4=9/4$$

$$=)b^{2}-4b+7/4=0$$

$$x^{4}$$

$$4b^{2}-16b+7=0$$

$$calc equth Solver:$$

$$=)b=7/2 \text{ or } 1/2$$

$$Sub each b' into ②$$

$$M = (7/2)-2 \text{ or } M = (\frac{1}{2})-2$$

$$= 3/2$$

$$\therefore I = (-\frac{2}{3/2}) \text{ Ns or } (-\frac{2}{3/2}) \text{ Ns}$$

.. the 4 options:

$$\binom{3/2}{-2} \operatorname{Ns}_{1} \binom{-3/2}{-2} \operatorname{Ns}_{1} \binom{-2}{3/2} \operatorname{Ns}_{1} \binom{-2}{-3/2} \operatorname{Ns}$$

www.mymathscloud.com

Work, energy and power - resolving force diagrams (inc. inclined planes); using work-energy principle; power

4. A car of mass 600 kg pulls a trailer of mass 150 kg along a straight horizontal road. The trailer is connected to the car by a light inextensible towbar, which is parallel to the direction of motion of the car. The resistance to the motion of the trailer is modelled as a constant force of magnitude 200 N. At the instant when the speed of the car is $v \, \text{m s}^{-1}$, the resistance to the motion of the car is modelled as a force of magnitude $(200 + \lambda v) \, \text{N}$, where λ is a constant.

When the engine of the car is working at a constant rate of 15 kW, the car is moving at a constant speed of 25 m s⁻¹

(a) Show that
$$\lambda = 8$$

4)

Later on, the car is pulling the trailer up a straight road inclined at an angle θ to the horizontal, where $\sin \theta = \frac{1}{15}$

The resistance to the motion of the trailer from non-gravitational forces is modelled as a constant force of magnitude 200 N at all times. At the instant when the speed of the car is $v \, \text{m s}^{-1}$, the resistance to the motion of the car from non-gravitational forces is modelled as a force of magnitude $(200 + 8v) \, \text{N}$.

The engine of the car is again working at a constant rate of 15 kW.

When v = 10, the towbar breaks. The trailer comes to instantaneous rest after moving a distance d metres up the road from the point where the towbar broke.

(b) Find the acceleration of the car immediately after the towbar breaks.

(4)

(c) Use the work-energy principle to find the value of d.

(4)

Question 4 continued

www.mymathscloud.com the question is asking for the value of hhence we need to resolve to the right bearing in mind from Yr | Mechanics Chp 8 that the fact that toubar is light means that the tension is equal throughout (: can be ignored)

$$R(\rightarrow)$$
: 600-(200)-(200+ χ v)=0

substituting v=25 as noticing we've got an expression for variable resistance

(b) let's look at the forces again - REDRAWING the part (a) diagram but on an inclined plane-label the RESISTANCE, the TENSION, the POWER rearranged

subbing in v=10 to get 'a' after toubar breaks

Question 4 continued

(c)... now focusing just on the TRAILER-re-drawing the diagram and adapting it to work-energy principle' - labelling the energies in:

Subbing into 'work energy' principle (Yr I)

$$(F = \frac{P}{v} \times d) + \frac{1}{2} m u^2 + mgh_1 = \frac{1}{2} m v^2 + mgh_2 + f_r \times d$$

NON APPLICABLE as tombar

broke .. no engine force from car

$$\frac{1}{2}(150)(10)^{2} + 0 = 0 + 150g(dsin\theta) + 200(d)$$

www.mymathscloud.com Question 4 continued
Question 4 continued
Question 4 continued
(Total for Question 4 is 12 marks)

5. A particle P of mass 3m and a particle Q of mass 2m are moving along the same straight line on a smooth horizontal plane. The particles are moving in opposite directions towards each other and collide directly.

Immediately before the collision the speed of P is u and the speed of Q is 2u.

Immediately after the collision P and Q are moving in opposite directions.

The coefficient of restitution between P and Q is e.

(a) Find the range of possible values of e, justifying your answer.

Given that Q loses 75% of its kinetic energy as a result of the collision,

(b) find the value of *e*.

(3)

(a) illustrating this linear collision diagrammatically -illustrating respective speed direction of motion etc.

NOTE: for the rest of the question we're going to be using these direct ... Straightaway x, y>0 (will use later!)

and following the usual procedure for elastic collisions in 10

notice how both speeds after are unknown :. can't stop at just using PCLM-need to do NEL (Impact law) as well:

... first PCLM-means the total momentum before the collision equals the total momentum after:

$$3m(u) + 2m(-2u) = 3m(-x) + 2m(y)$$

expand brackets

... now NEL- i.e formula to find coefficient of restitution:

subbing into above

$$y = y - (-x) = y + x$$

DO NOT WRITE IN THIS AREA

Question 5 continued

```
www.mymathscloud.com
solve o and o simultaneously - elim. 'y':
  1 - 2x2
        .3x-2y=4
        2x+2y = 6eu
          5x = u + 6eu
          factorise 'u'on RHS
           5x = 4(1+6e)
            x = 5(1+6e)
      next elim. 'x' :
     3×2 -0
```

3y + 3x = 9eu 24 -3x = -4 5y = 9eu -u factorise 'u' on RHS 5y = u(9e-1) =) y = 4 (9e-1)

now for RANGES for e-need to exploit those facts about x andy that we spoke about earlier-that x, y)0

for 'x':	for'y':
$x = \frac{u}{u} (1+6e) > 0$	y = 4 (9e-1)>0
$x = \frac{u}{5} (1+6e) > 0$ $+ u/5$	÷4/5 ÷4/5
1+6270	9e-1>0
6e)-I	9651
6e)-1 ÷6 e)-1/6	ez1/a uhich
but 0 <u>e e e</u> so reject	fits 05es1 : include in internal

.. combining above facts about "2" =) 1/9< e4 |

(b) know that this is the 'kinetic energy' part of Chp 4

4if Q loses 75% of its K.Ei this suggests that K.Einal = 25% (1/4) of (x) its K.E. remembering the formula for: K. Einitial = 1 m(ua)

Question 5 continued

K. E final =
$$\frac{1}{2}$$
 m $(v_Q)^2$

subbing into formulae and the equation:
$$\frac{1}{2} \frac{(2m)(\frac{u}{5}(9e-1))^2}{(2m-1)^2} = \frac{1}{4} \times \frac{1}{2} \frac{(2m)(2u)^2}{(2u)^2}$$

expand brackets

$$mu^{2}\left(\frac{1}{25}(qe-1)^{2}\right) = \frac{1}{4}(4mu^{2})$$

$$= 1 \frac{mu^{2}}{25}(qe-1)^{2} = mu^{2}$$

$$\times 25 \times 25$$

$$(qe-1)^{2} = 25$$

and solve above for the value of 'e'

JAY 1: square root	HAY 2: expand and solve quadratic
9e-1 = ± 5	81e²-18e +1=25
● 9e-1=5● 9e-1=-5	$=) 81e^{2}-18e-24=0$
=) 9e = 6 <u> </u>	calc equtn solver
=) $qe = 6$ =) $qe = -4$ $e = 6/q = \frac{2}{3}$ or $e = -\frac{4}{9}$	=)e=2/3 or -4/9

but bearing in mind that = Le = 1 from part (a)

www.mymathscloud.com Question 5 continued
That I so the second se
Question 5 continued
(Total for Question 5 is 11 marks)

Elastic collisions in 2D - spheres oblique impact; finding impulse

6. [In this question \mathbf{i} and \mathbf{j} are perpendicular unit vectors in a horizontal plane.]

A smooth uniform sphere A has mass 0.2 kg and another smooth uniform sphere B, with the same radius as A, has mass 0.4 kg.

The spheres are moving on a smooth horizontal surface when they collide obliquely. Immediately before the collision, the velocity of A is $(3\mathbf{i} + 2\mathbf{j}) \,\mathrm{m} \,\mathrm{s}^{-1}$ and the velocity of B is $(-4\mathbf{i} - \mathbf{j}) \,\mathrm{m} \,\mathrm{s}^{-1}$

At the instant of collision, the line joining the centres of the spheres is parallel to i

The coefficient of restitution between the spheres is $\frac{3}{7}$

- (a) Find the velocity of A immediately after the collision.
- (b) Find the magnitude of the impulse received by A in the collision.
- (c) Find, to the nearest degree, the size of the angle through which the direction of motion of A is deflected as a result of the collision.

(3)

(2)

(a) notice now we have an 'oblique collisions between two spheres question - first illustrating the collision with a diagram:

... label: velocities direction line of centres parallel to i

NOTE: initially easier to aim 'x'and 'y' RIGHTUARDS to andid-v

now remembering how as two spheres collide obliquely, the IMPACT (impulse) acts ALONG THEIR LINE OF CENTRES, which implies that:

parallel components:

final velocities change - becomes a standard 'collisions in 10

notice how because both final velocities are unknown, have to use PCLM AND NEL (Impact law)

... first PCLM: States that momentum BEFORE collision equals momentum

AFTER

Question 6 continued

substituting into formula

$$0.2(3) + 0.4(-4) = 0.2(x) + 0.4(y)$$

expand brackets

$$0.2x + 0.4y = -1 - 0$$

... next NEL -i.e formula for coefficient of restitution:

=)
$$\frac{3}{7} = \frac{y-x}{3-(-4)}$$

=) $\frac{3}{7} = \frac{y-x}{7}$

$$=)$$
 $\frac{3}{7} = \frac{y-x}{7}$

equating numerators

$$=) y - x = 3 - 2$$

solving o and @ simultaneously-calc equta

solver or elim. y (question asks for &')

$$x+2y=-5$$

$$3x = -11$$

here the negative suggests that

particle A did in fact go LEFTHARDS

... perpendicular components: REMAIN THE SAME

hence populating initial diagram:

=)
$$v_6 = {-11/3 \choose 2} ms^{-1}$$
 or in i-i notation:
 $(-11/3 i + 2i) ms^{-1}$

www.mymathscloud.com

Question 6 continued

(b) now that we have both the initial and final parallel components of A's velocity-can work out the impulse we mentioned in part (a) through subbing into Impulse-momentum principle: I=m(v-u) (after all, impulse only acts parallel to the line of centres)

$$I = 0.2 \left(-\frac{11}{3} - 3 \right)$$

(c) representing A's path diagrammatically:

... need to find this angle of deflection:

METHODI: ue will use the formula for angle between 2 vectors:

sub into above

$$\cos \theta = \frac{u \cdot v}{|u| |v|}$$

$$= 3 \cos \theta = \frac{\binom{3}{2} \cdot \binom{-11/3}{2}}{\sqrt{(3)^2 + (2)^2} \sqrt{(-11/3)^2 + (2)^2}} = \frac{3 \binom{-11/3}{3} + 2(2)}{\sqrt{13} \sqrt{157/4}}$$

$$= \frac{-11+4}{\sqrt{13}\sqrt{157/q}} = \frac{-7}{\sqrt{13}\sqrt{157/q}}$$

but need the angle:

$$\theta = \cos^{-1}\left(\frac{-7}{\sqrt{13}\sqrt{157/4}}\right)$$

evaluate on CALC (in degrees mode)

METHDO 2: considering the two vectors SEPARATELY-making 'a' and 'B' to the x-axis

Question 6 continued

see from this diagram that can exploit angles on a straight line properties here the

www.mymathscloud.com

angle of deflection = 180° - $tan^{-1}\left(\frac{2}{3}\right)$ - $tan^{-1}\left(\frac{2}{11/3}\right)$

(Total for Question 6 is 12 marks)

www.mvmathscloud.com Elastic string and springs - work-energy principle including elastic

energy; dynamics problems with spring

7. A particle P, of mass m, is attached to one end of a light elastic spring of natural length a and modulus of elasticity kmg.

The other end of the spring is attached to a fixed point O on a ceiling.

The point A is vertically below O such that OA = 3a

The point B is vertically below O such that $OB = \frac{1}{2}a$

The particle is held at rest at A, then released and first comes to instantaneous rest at the point B.

(a) Show that
$$k = \frac{4}{3}$$

(b) Find, in terms of g, the acceleration of P immediately after it is released from rest at A.

(c) Find, in terms of g and a, the maximum speed attained by P as it moves from A to B.

(6)

(a) always with 'elastic strings and springs' questions, have to focus on drawing the right diagram -...label:

BEFORE

AFTER

. E.P. E (stretched)

travelled through a

distance: A - B i.e 3a - 1a = 29

using the conservation of mechanical energy principle-the total amount of MECHANICAL ENERGY (K.E. G.P.E. E.P.E) in a closed system, in the absence of dissipative forces (friction, air resistance) remains constant

Question 7 continued

$$\frac{1}{2}mu^{2}+mgh_{1}+\frac{\lambda x^{2}}{2l}=\frac{1}{2}mv^{2}+mgh_{2}+\frac{\lambda x^{2}}{2l}$$

expand + cancel 'a's and 'mg's
$$\frac{kmq(\frac{1}{4}a^2)}{2\alpha} = \frac{\frac{1}{4}kmq\alpha^2}{2\alpha} + \frac{5}{2}mq(a)$$

=)
$$2k\alpha = \frac{1}{8}k\alpha + \frac{5}{2}\alpha$$

collect like 'k'terms

$$\frac{15}{8} k = \frac{5}{2}$$

$$\div \frac{15}{8} \div \frac{15}{8}$$

$$=) k = \frac{15}{2} \times \frac{8}{4} = \frac{4}{3}$$

$$\therefore k = \frac{4}{3}$$

(b) now asked to evaluate a DYNAMICS springs question:

HINTS at 2nd Newton's law - 2f=ma -drawing a force DIAGRAM for the spring:

11111111111 determining upwards as +ve (because spring going UPWARDS to Stop at B)

R(T)

$$T - mg = ma$$

where T= \(\frac{\cappa \times}{2}\) for STRINGS/SPRINGS

subbing in and cancelling $\frac{(4/3^{11} \text{ mg}(2x))}{(2x)} - \text{mg} = \text{mg}$

$$\frac{\frac{(4/3)! mq(2x)}{2x} - mq = mq}{2x}$$

(c) recall from Yr I Mechanics that the max. speed for any object in motion

www.mymathscloud.com

Question 7 continued

occurs when a=0 .. in FMI this would mean when the spring reaches equilibrium (call this Q)

4 this occurs when T=mg (from force diagram in (b))

subbing tension formula in:

$$\frac{\lambda x}{\varrho} = mg$$

$$\frac{4}{3}mf(x) = mg$$

$$x \alpha = \frac{4}{3}x = 0$$

$$+ \frac{4}{3}x = 0$$

the work-energy principle from A to Q to find this max. speed

OA-OE = 3a - 7/4a = 5/4a)

subbing this into conservation of mech. (can get max speed from the 'v' in \frac{1}{2}mv2)

formula:

$$\frac{1}{2}mu^{2} + mgh_{1} + \frac{\lambda x^{2}}{2L} = \frac{1}{2}mv^{2} + mgh_{2} + \frac{\lambda x^{2}}{2L}$$

$$0 + 0 + \frac{4}{3}\frac{mq(2a)^{2}}{2(a)} = \frac{1}{2}mv^{2} + mg(5/4a) + \frac{4}{3}mq(\frac{3a}{4})^{2}$$

$$\frac{3a}{2(a)}$$

$$\frac{8}{3}ag = \frac{1}{2}v^2 + \frac{5}{4}ag + \frac{3}{8}ag$$

(Total for Question 7 is 12 marks)

TOTAL FOR PAPER IS 75 MARKS

www.ollectnike.ag tern.com
$$\frac{1}{2}v^2 = \frac{25}{24} ag$$

$$=)v^2 = \frac{25}{12} ag$$

$$square root:$$

$$v = \int \frac{25}{12} ag or \frac{5}{2} \int \frac{99}{3}$$

www.mymathscloud.com